

Subarachnoid Hemorrhage: Basics, Breakthroughs, and Beyond

Tiffany Hoke, DNP, RN, RNP, APRN-RX, AGACNP-BC, SCRN, CNRN

International Neuroscience Nurses Symposium

Introduction

- Aloha!
- Why talk about subarachnoid hemorrhage (SAH)?
 - Demystify.
 - Empower through awareness promotion.

Objectives

 Summarize basic science and management of SAH.

 Highlight recent breakthroughs related to the science and management of SAH and inspire us to go beyond.

Basics

KEEP CALM

AND
FOCUS ON THE BASICS

Epidemiology

- - 5% of all strokes.
 - 30,000 people yearly in U.S.
 - Most between ages 40-60.
 - Do NOT dismiss suspicion of SAH based on age of presenting individual.
 - Women>men.
 - 12% die before receiving medical attention.
 - 20% die <u>after</u> admission.
 - 2/3rds survive.
 - ½ of survivors are permanently disabled.

SAH Etiologies

- Trauma = Most common
- Aneurysmal

cause of SAH.

- Idiopathic permesencephalic
 - Venous source
 - Posterior circulation aneurysm
 - Perforating artery rupture
- AVM
- Moyamoya

- Sympathomimetics
 - Methamphetamine
 - Cocaine
- Pituitary apoplexy
- Vasculitis
- Sickle Cell
- Coagulopathy
- Neoplasm

Aneurysmal Patho

- Thinner
- Less elastin.
- No external elastic lamina.
- Less supporting tissue.
- Possible defects.

Size

- < 3 mm (very small).</p>
- 3-6 mm (small).
- 7-12 mm (small-medium).
- 13-25 (large).
- > 25mm (giant).

Aneurysmal Patho

- Morphology or Types of Aneurysms
 - Saccular
 - 80% of ruptured.
 - Circle of Willis branches and bifurcations.
 - Fusiform
 - Dissecting
 - Mycoctic
 - Septic emboli ->occlusion->wall weakening.
 - · Distal cerebral vessels.

Intracranial Aneurysm Incidence and Prevalence

- 2% of adults have one.
 - 90% small (< 10 mm) and asymptomatic.
- 20% of patients have 2+
 - Often a contralateral mirror.

Principle Sites

Anterior = 90%

- AComA=40%
- PComA/ICA junction=30%
- 1st MCA bifurcation=20%

Posterior

- Basilar apex
- VA and PICA junction
- Distal cerebral tree (rare)

Associated Aneurysmal Risk Factors and Conditions

- Increases with age.
- Hypertension
- Smoking
- ETOH abuse.
- Sympathomimetic drugs.
- Atheroscelorsis
- AVMs
- Moyamoya
- Coarctation of aorta.
- Sickle cell
- Bacterial endocarditis.
- Fungal infection.
- Collagen-Connective Tissue Related Disorders.
- More

- Positive family history
 - MRA screen.
 - 2+ first degree relatives.
 - 5-10% **POSTIVE.**
 - PCKD

Intracranial Aneurysm Rupture

- Annual risk 0.7%.
- Risks
 - Increasing size.
 - Prior aneurysmal SAH.
 - Basilar apex and pcomm aneurysms.
 - Smoking
 - Aneurysmal headache.

- CN compression.
- Heavy ETOH.
- Family history of rupture.
- Females
 - Menopausal.
- Multiple aneurysms.
- Hypertension
- Sympathomimetic agents.

Clinical Features

Headache

- Sudden, severe, and constant.
 - "Worst of my life." "Exploding."
- Occipital or nuchal.
- More rapid, longer than migraine.
 - Seconds to max.
- After exertion or Valsalva.
- Concurrent vomiting
- Abrupt cessation of activity.
 - Treatment response does not exclude diagnosis.

Transient deficits

- Seizure
- Ischemia
- Sudden ICP increase as blood enters subarachnoid space.

40-50% = normal mental status.

Other Clinical Features

- Increased ICP
 - 3rd or 6th CN palsies.
 - Retinal hemorrhages.
- Nausea
- Vomiting
- Nuchal rigidity.
- Meningismus
- Back pain with sciatic radiation.
- Confusion
- Lethargy
- Amnestic to event.

Focal Signs of Aneurysmal Rutpure

AComA

- Leg weakness.
- Confusion
- Bilateral Babinski.

PComA or SCA (ICA/PCA Junction)

- 3rd and 6th nerve palsies.
- Weber's syndrome.
 - Contralateral hemiplegia due to midbrain compression.
 - Giant SCA.

Cavernous sinus

Opthalmoplegia due to 3rd, 4th, 6th
 CN compression

PCA

Homonymous hemianopia

• MCA

- Aphasia
- Hemiparesis
- Anosognosia
- Seizures

Basilar bifurcation

- Forward = Visual field defects and hypopituitarism.
- Vertically = Amnesia, 3rd nerve palsy, bulbar signs, and quadriparesis.

Opthalmic artery

Monocular visual disturbance.

When to Scan?

- New neuro findings = INVESTIGATE
- The headache + new neuro findings = INVESTIGATE.
- Exam can be normal!
 - 12-24% SAHs misdiagnosed!
 - 5% of 1st visit ED patients with HA misdiagnosed → worse outcomes.
 - Often due to failure to attain CT.
 - » If negative, low threshold for LP!
 - » If series LPs contain only positives, too few are being performed!

ENLS SAH Protocol:The First Hour

- Brain imaging.
- Labs
 - PT/PTT
 - CBC
 - PLT
 - BMP
 - Troponin
 - Toxicology
- EKG
- Establish BP goal.

Address hydrocephalus.

Diagnostics

- SAH in cisterns, around circle of Willis, major fissures, IVH.
 - Convexity usually nonaneurysmal, but remember mycotic.
- False negative.
 - Too small.
 - Les sensitive over time.
 - 50% after 1 week.
 - Hematocrit < 30%
 - Technical factors.

CTA

Circle of Willis aneurysms, and some distal.

Diagnostics

- Consider availability, cost, and required interpretation experience.
- Relationship of aneurysm to adjacent brain structures.
- Can detect aneurysms as small as 3-4 mm.

Which one bled?

- Largest.
- Most irregular.
- Most focal spasm.
- Within vascular territory of focal signs.
- Best correlates with blood collection on CT.

Diagnostics

- If CT negative.
- Negative
 - Large RBCs in initial tube clear by 4th= Traumatic tap.
 - Absence of xanthochromia.
 - Yellowish CSF
 - Hemoglobin breakdown.

Positive

- Large RBC not clearing by 4th.
- Faint pink (4-5 hours out).
- Xanthochromic (12 hours out).
- Elevated protein.
- Pleocytosis (WBC).
- Elevated opening pressure.
- Normal glucose.

After Diagnosis Confirmed

- Bedrest
- Cardiac monitor
- EKG
- Assure labs attained and review.
- Seek expert consultation
 - Neurovascular or stroke specialist
 - Neurointensivist

Communicate

- Airway status.
- Presentation
- Hunt-Hess
- Imaging/LP results.
- Coagulopathy?
- Hydrocephalus?
- Meds given.
- Other images?
- Discuss BP goal.
- Seizure prophylaxis?

After Diagnosis Confirmed

- Neurocardiogenic shock
- New hypoxia and acute respiratory failure.
- Neurogenic pulmonary edema.
- Seizure.

Correct coagulopathy.

- Consider risk versus benefit and related patient specifics.
- INR goal < 1.4.
- PLT goal > 50,000.
- Antiplatelet reversal?

After Diagnosis Confirmed

- Avoid straining , Valsalva, stress.
- Short acting IV analgesics (fentanyl).
- Avoid over-medication.
 - · Masks exam.
 - Reversal agents cause agitation and risk re-rupture.

Control BP

- Consider pre-morbid BP.
- SBP < 140-160 or MAP < 110.
- Nicardipine
 - Ease of titration.
- No nitroprusside or nitroglycerin.

SAH Treatment

Aneurysm securement.

- Complication prevention.
- Complication treatment.

Clinical Course Complications

- Hydrocephalus
- Aneurysmal re-rupture
- Vasospasm and delayed cerebral ischemia (DCI)
- Multi-system abnormalities

Hydrocephalus

- Altered CSF dynamics.
 - Blocked flow (obstructive)
 - Impaired absorption due to attachment of blood to arachnoid granulations.
- 30% first 3 days.
- May be asymptomatic
- Increasing headache, lethargy, incontinence, and decreased spontaneity.
- CT scan
- EVD

Aneurysmal Re-rupture

- Highest risk within first 12-24 hours.
 - 20% in first 2 weeks.
- Mortality rate = 50%.
- IPH and SAH.
- Sudden, abrupt, severe changes.
- Rapid coma.

Prevent

- Bedrest.
- Minimize stimuli.
- Pain control.
- Bowel regimen.
- BP regulation.
- Early securement

Vasospasm

- Substance release into CSF -> Vasoconstriction -> arterial wall necrosis.
 - Hemolysis (oxyhemoglobin).
 - Endothelial factors.
 - Coagulation cascade.
 - Abnormal smooth muscle contraction or failed relaxation.
- Can cause delayed cerebral ischemia (DCI).
- Risk Factors:
 - Large amount of blood and thick blood clots in cisterns.
 - Small arterial lumen < 0.5mm with low distal perfusion.
 - Decreased LOC.
 - IVH
 - Elevated BNP.

Vasospasm

- Tachycardia.
- Hypertension.
- EEG abnormalities.
- Decreased LOC.

Diffuse

- Headache
- Stupor
- Confusion

Focal signs

- Indicate artery involved.
- Surveillance and Prevention

Vasospasm

- Day 3-10 increasing velocity.
- Day 5-9 peak.
- Usually resolved by 2 weeks, but max velocities can persist ≥ 20 days.
- MCA > 140 cm/s = Mild on angiography.
- MCA > 200 cm/s = Severe.

Suspect?

- CTA
 - Absence of vasoconstriction has negative predictive value of 95%.
- CT perfusion.
 - Assess for signs of DCI, salvageable penumbra, or stroke?
- Angiography
 - · Diagnostic and therapeutic
 - Not without risk.
 - 50% positives are asymptomatic.

Other Neuro Complications

- Poor-grade SAH
- LOC at bleeding onset.
- Increased mortality, disability, and cognitive dysfunction.
- Early brain injury on MRI within 72 hours.
 - Symmetric ischemic injury in 70% of Hunt-Hess 4-5.
 - Usually ACA territories.
 - Acute ischemia, reperfusion injury, microvascular dysfunction, inflammation.

Seizures

- Tonic-clonic
 - 5% during hospitalization.
 - 10% 1 year post D/C.
- NCSE
 - 20% of poor-grade.

Fever

- 80%
- Central (poor-grade).

Cardiac Complications

- Transient echo abnormalities 50-100%.
- Systemic hypertension
- Heart failure
- Arrhythmia
- Myocardial myoctyolysis
 - Serum catecholamines and sympathetic discharges from hypothalamus.
 - Subendocardial hemorrhage.
 - Myofibrilllary degeneration.
 - Contraction band necrosis.
- Myocardial infarction
- Hypovolemia
- Site hematoma.

Cardiac Complications

Cardiac Troponin Elevation and Outcome after Subarachnoid Hemorrhage: A Systematic Review and Meta-analysis

Limin Zhang, MD, Zhilong Wang, MM, and Sihua Qi, PhD

- Troponin elevation in 30%.
- Increased risk of
 - DCI
 - Poor outcome
 - Death

Pulmonary Complications

- Acute respiratory failure.
- Neurogenic pulmonary edema (NPE).
 - Under recognized.
 - Rapid onset.
 - Proteinaceous fluid.
 - Acute ICP elevation->massive autonomic discharge -> increased cerebral perfusion -> accumulation of fluid within lungs -> hypoxemia
 - Treatment
 - Lower ICP
 - Cautiously eliminate excess fluid.

Fluid and Electrolyte Complications

- Higher risk with AComA aneurysms.
- Hyponatremia
 - 2-fold increase in length of stay->cost->nosocomial complications.
 - Associated with vasospasm.
- Cerebral salt wasting (CSW).
- Hypervolemia
 - Usually iatrogenic.
 - Can challenge management of NPE and heart failure.
- Goal euvolemia and normonatremia.

Other Complications

- Hypoperfusion of hypothalmic-pituitary blood supply.
- SIADH
- Diabetes insipidus.

Hematologic Complications

- Anemia
 - Reduced O2 delivery

Breakthroughs and Beyond

- Most preventable cause of mortality and poor neuro outcome.
- 30%
- High Risk and Poorer Outcomes.
 - Severe initial SAH.
 - More cisternal blood and IVH.
 - Poor post resuscitation exam.

Paradigm Shift

- Large-vessel not required for DX.
- Think early brain injury, microcirculatory dysfunction, loss of autoregulation, and micro thrombosis.
- Post-mortem infarcts correlate with microthrombi more than vasospasm or aneurysm location.

- Nimodipine
- Euvolemia and normonatremia.
 - Isotonics
 - Fludrocortisone (0.2-0.4 mg/day).
 - Hypertonic saline (3%) for acute correction of symptomatic hyponatremia.

Detection and Diagnosis.

- Clinical exam: Most reliable.
 - Poor grades: Less consistent manifestations.
- TCD
 - MCA < 120 cm/s: High negative predictive value.
 - MCA > 180 cm/s: High positive predictive value.
 - <u>Limitations</u>
 - No assessment of distal vasculature.
 - Operator dependent.
 - 10% have no bone windows.
 - 40% with DCI have MCA < 120 cm/s.

Detection and Diagnosis (cont.)

- Vascular imaging.
 - CTA: First line screening tool.
 - Day 4 (high risk patients).
 - Day 8 (lower risk patients).
 - » Lack of spasm on day 8 = low risk of subsequent DCI.
 - » Decreased ICU days and LOS.
 - · CT perfusion.
 - Coupled with CTA.
 - Detects salvageable penumbra.

- Multimodality monitoring (MMM)
 - · Real time early detection.
 - Early autoregulatory failure = poor outcomes.
 - ICP monitoring.
 - 80% poor grade SAH have intracranial HTN.
 - CPP > 70 = lesser risk of brain metabolic crsis and hypoxia.

PbtO2

- Detects cerebral compromise in absence of elevated ICP or low CPP.
- Early detection of silent infracts.
- Higher mean = improved survival.

Microdialysis

- Interstitial fluid composition and cellular metabolism.
- Derangements precede silent infarction by few hours.
 - » Lactate > 4 mmol = DCI.

Active DCI Stepwise Approach

First Line Therapy

- Induced Hypertension (SBP 160–220 mm Hg)
- Volume Optimization (Isotonic Crystalloids Targeting Euvolemia)

Rescue Therapy: Tier One

- · Endovascular Therapy
 - Balloon Angioplasty
 - Intra-arterial Vasodilators
- Cardiac Output Augmentation (CI >4.0 L/min/m²)
- Hemoglobin Optimization (Hb >80 g/L)

Rescue Therapy: Tier Two

- · Therapeutic Hypothermia
- Intrathecal Vasodilators
- Hypertonic Saline
- Aortic Flow Diversion
- · Intra-Aortic Balloon Pump

Cardiac Output Augmentation

- Target CI >4.0
- Dobutamine and phenylephrine
 - Can increased CBF by 50% in SAH with severe vasospasm.
- Milrinone
 - More effective inotropy in neurogenic stunned myocardium
 - Decreased beta-receptor sensitization.

Neuroinflammation Research

Reduced inflammation and apoptosis in models.

Glyburide

Reduced inflammation and behavioral deficits in models.

Inflammatory cytokines mediate vasospasm.

- Rosiglitazone: Antioxidant reduced vasospasm and improved outcome in models.
- Glutamate modulation reduced vasospasm in models.

Autophagy-Lysosomal System

Self-catabolic process

- Removes dysfunctional or unnecessary intracellular components degraded by lysosomal enzymes.
- Activated in ipsilateral frontobasal cortex.
- Duration 0-3 days.
- Under or over function is bad.
 - Appropriate activity = pro-survival mechanism.
 - Excessive self-digestion->cell death.
- Melatonin stimulated autophagy and suppressed apoptic cell death->deficit amelioration in models.

Radiogenomics

- Aneurysmal pathophysiology directly related to regional blood flow.
- Non-invasive analysis of aneurysm morphology and hemodynamics.
- Ferumoxytol-enhanced MRI.
 - Aneurysmal inflammation.
 - Predicted instability and increased 6-month rupture risk.
 - Biomarker indicating more urgent intervention.
- Diagnostic CSF biomarkers for vasospasm
 - Endothelin-1
 - Interleukin-6
- Personalized medicine protocols in treatment and prevention of vasospasm.

Bright Side

- Improved survival over 30 years.
 - Reduced fatality from 50% to 20% in high volume centers.
- We can go beyond.

Super Scientific AND Inspirational Closing Quotes

- "I have no special talents. I am only passionately curious."
 - Be curious.
- "For us believing physicists, the distinction between past, present, and future is only a stubborn illusion."
 - Abandon illusions; actualize solutions.

Conclusion

Additional Resources

- Neurocritical Care Society
 - www.neurocriticalcare.org
 - Family & Patient Resources > Stories of Hope
- Brain Aneurysm Foundation
 - www.bafound.org
- Mahalo!

References

- Albert Einstein. (n.d.). Retrieved November 3, 2016 from https://en.wikiquote.org/wiki/Albert_Einstein
- Achrol, A.S. & Steinberg, G.K. (2016). Personalized medicine in cerebrovascular neurosurgery: precision neurosurgical management of cerebral aneurysms and subarachnoid hemorrhage. *Frontiers in Surgery, 3(34). doi:10.3389/fsurg.2016.00034*
- Brain Aneurysm Foundation. (2016). Brain aneurysm foundation. Retrieved from http://www.bafound.org
- Brisman, J.L. (2016). Neurosurgery for cerebral aneurysm. Retrieved from http://emedicine.medscape.com/article/252142-overview
- Caplan, L.R. (2009). Subarachnoid hemorrhage, aneurysm, and vascular malformations. In *Caplan's stroke: A clinical approach* (4th ed.). Retrieved from https://www-clinicalkey-com.ezproxy4.library.arizona.edu/#!/content/book/3-s2.0-B9781416047216500146Mayer, S.A., Bernardini, G.L., & Solomon, R.A. (2016). Chapter 39. Subarachnoid hemorrhage. In E.D. Louis, S.A. Mayer, & L.P. Rowland (Eds.), *Merritt's neurology* (13 ed.). Retrieved from http://online.statref.com/Document.aspx?fxld=501&docId=331
- Edlow, J.A., Figaji, A, Samuels, O. (2015). Emergency neurological life support: subarachnoid hemorrhage. *Neurocritical care*, *23*, S103-S109. doi:0.1007/s12028-015-0183-0
- Francoeur, C.L., & Mayer, S.A. Management of delayed cerebral ischemia after subarachnoid hemorrhage. *Critical Care, 20:277.* doi:10.1186/s13054-016-1447-6
- Lucke-Wold, B.P., Logsdon, A.F., Manoranjan, B., Turner, R.C., McConnell, E., Vates, G.E., . . . Simard., J.M. (2016). Aneurysmal subarachnoid hemorrhage and neuroinflammation: A comprehensive review. International Journal of Molecular Sciences. doi:10.3390/ijms17040497

References

- Neurocritical Care Society (2016). *Stories of hope*. Retrieved from http://www.neurocriticalcare.org/Family-Patient-Resources/Stories-of-Hope
- Robert Wood Johnson University Jospital. (2016). What is a brain aneurysm. Retrieved from http://www.rwjuh.edu/brain-aneurysm/brain-aneurysm-overview.aspx
- Ropper A.H., Samuels M.A., Klein J.P. (2014). Chapter 34. Cerebrovascular diseases. In A.H. Ropper, M.A. Samuels, J.P. Klein (Eds.), Adams & Victor's Principles of Neurology (10 ed.). Retrieved from http://accessmedicine.mhmedical.com.ezproxy4.library.arizona.edu/content.aspx?bookid=690&Sectionid=50910885
- Szeder, V., Tateshima, S., & Duckwiler, G.R. (2016). Intracranial aneurysms and subarachnoid hemorrhage. In R.B. Darroff, J. Jankovic, J.C. Mazziotta, & S.L Pomerory (Eds.), *Bradley's neurology in clinical practice* (7th ed.). Retrieved from https://www-clinicalkey-com.ezproxy2.library.arizona.edu/#!/content/book/3-s2.0-B9780323287838000673
- Turner, O.J. (1947). *Albert einstein, 1879-1955* (Digital photograph]. Retrieved from https://www.loc.gov/item/2004671908/
- Zhang, L, Wang, Z., & Qi, S. (2015). Cardiac troponin elevation and outcome after subarachnoid hemorrhage: A systematic review and meta-analysis. *Journal of Stroke and Cerebrovascular Diseases, 24*(10), 2375-2384. doi:10.1016/j.jstrokecerebrovasdis.2015.06.030
- Wu, H., Niu, h. Wu, C., Li, Y., Wang, K., Zhang, J., . . . Yang, S. (2016). The autophagy-lysosomal system in subarachnoid hemorrhage. *Journal of Cellular and Molecular Medicine*, 20(9), 1770-1778. doi:10.1111/jcmm.12855

